博客
关于我
Python数据科学分析实战
阅读量:275 次
发布时间:2019-03-01

本文共 688 字,大约阅读时间需要 2 分钟。

数据科学着重于对数据进行研究与分析。借助计算机的快速计算能力,我们能够从海量数据中提取有价值的信息,进而为决策提供支持。在人工智能时代,Python语言无疑是数据科学的重要工具。掌握Python数据科学技能,不仅是从事AI研究的基础,更是解决实际问题的关键能力。

Python数据科学分析实战课程

本课程旨在通过实践案例,帮助学习者掌握Python数据科学的核心技能。课程内容涵盖数据处理、特征工程、建模与分析等多个方面,结合真实项目案例,帮助学生快速上手并解决实际问题。

课程分为五个模块,涵盖以下内容:

01 Python与数据科学概述

本节将介绍数据科学的基本概念、工具与技术,以及Python在数据科学中的核心作用。通过简单的示例,帮助学生快速理解数据科学的价值和应用场景。

02 足球运动员特征分析

本节将通过足球运动员数据集,讲解如何提取、清洗和分析运动员特征。案例将展示如何利用数据科学技术,发现隐藏的规律并为球队制定训练策略。

03 Facebook营销组合分类

本节将结合真实的Facebook营销数据,讲解如何利用深度学习模型进行营销组合分类。通过案例展示如何预测营销组合的效果,为市场营销决策提供数据支持。

04 在线实验:足球运动员特征分析

通过实际的足球运动员数据,进行动手分析,学习如何提取和可视化关键特征。学生可以尝试不同的分析方法,发现数据背后隐藏的模式。

05 在线实验:Facebook营销组合分类

基于调查数据集,建立多分类模型,预测未知数据的分类结果。本节不仅讲解模型构建方法,还将分享如何通过可视化工具直观展示分类效果。

更多精选课程

转载地址:http://bnyo.baihongyu.com/

你可能感兴趣的文章
Netty心跳检测机制
查看>>
Netty核心模块组件
查看>>
Netty框架内的宝藏:ByteBuf
查看>>
Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
查看>>
Netty源码—2.Reactor线程模型一
查看>>
Netty源码—3.Reactor线程模型三
查看>>
Netty源码—4.客户端接入流程一
查看>>
Netty源码—4.客户端接入流程二
查看>>
Netty源码—5.Pipeline和Handler一
查看>>
Netty源码—5.Pipeline和Handler二
查看>>
Netty源码—6.ByteBuf原理一
查看>>
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty源码—8.编解码原理一
查看>>
Netty源码—8.编解码原理二
查看>>
Netty源码解读
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>
Netty相关
查看>>
Netty遇到TCP发送缓冲区满了 写半包操作该如何处理
查看>>